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Abstract 
 To optimize the energy consumption embedded systems, the estimation of energy consumption of the 

embedded applications are very important. This paper proposes a simple but effective instruction-level energy 

estimation model for embedded systems. For case study purposes, the model parameters were determined for a 

commonly used ARM9TDMI-based microcontroller. The total  energy consists of the energy consumed by the 

processor core, flash memory, memory controller, SRAM etc. The model parameters that are determined includes 

op-code of instructions, number of shift operations, register bank bit flips, instructions weight and their Hamming 

distance, different types of memory accesses, the effect of pipeline stalls etc. To validate the proposed model, a 

physical hardware platform was developed which is having energy measurement capabilities. For several 

experiments conducted on   various embedded applications from  MiBench benchmark suite and less than 6% error 

in the energy consumption estimation was shown. Also an energy profiler tool was developed for the systems that 

use ARM9TDMI processors which provides valuable information and guidelines for software energy optimization. 

 

Keywords: Embedded System. 

      Introduction
Embedded systems play a major role inday to day life 

of people in different areas. Mobile phones, washing 

machines, satellites etc are a few examples for 

devices that are having a processor embedded on 

them. A wide group of systems are mobile, battery 

powered devices, with limited source of energy. 

Thus, consumption of energy is an important aspect 

in embedded system design phase- for any 

application, itself. This helps the designers in 

optimizing the battery lifetime. Software is 

responsible for the large portion of energy 

consumption, in the case of an embedded system. 

Hence, an efficient model is necessary for the energy 

estimation. Mainly, there are two models for 

embedded instruction level energy optimization: 

measurement-based and simulation-based. 

In the simulation-based approach a 

simulation model of the target hardware is used to 

run the applications and calculate the energy 

consumption of each part of the system which may 

be as detailed as gate level[2] or as abstract as  

behavioral level[3]. This approach needs the 

simulation model of all hardware modules that are 

mostly unavailable or very expensive. Also, 

evaluating the impact of a small change in an 

instruction opcode or operands on the total energy 

consumption of the system requires rerunning the 

simulation. 

 

Measurement-based methods use data 

obtained from a physical target device. Most of the 

models [4],[5],[6], associate the instructions with 

the corresponding energy cost. The total application 

energy consumption is the aggregate cost of  all  

executed instructions that can  be calculated by 

running the application in an emulator. The main 

advantage of measurement-based methods is high 

accuracy in the energy estimation due to the real 

values obtained from the target platform. 

It should be noted that for most of the 

commercially used microcontrollers (e.g., 

AT91SAM7X256 considered in this paper) there is 

no authentic SPICE (or any other detailed) sim- 

ulation model; hence, it is not possible to adopt a 

simulation- based approach. Furthermore, we believe 

that as measurement- based approaches use physical 

and real systems, they are al- ways more accurate 

than simulation-based approaches. Hence, in this 

paper we adopt a measurement-based approach. 

Energy estimation models are also 

categorized according to  their  scope.  The  models  

presented  in  [4],  [5],  and  [7] only model the 

processor core and the model presented in [6] 

models an embedded system including a 

microcontroller, external RAM, and external A/D 

converter. 

In this paper, we introduce a new 

instruction-level energy estimation model and tool 
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for an ARM9TDMI-based micro- controller 

including the processor core, internal Flash and 

SRAM memories. While our model is simple 

enough to be implemented in any instruction set 

simulator, it provides good accuracy and can be 

used to estimate the energy consump- tion of the 

processor core (ARM9TDMI), SRAM, and Flash 

memory units of an embedded system. Also, the 

process of deriving the model allows for easy 

recalibration of the model for other platforms. The 

model is based on parameters such as instructions 

type, number of executed shift operations, register 

bank bit flips, weight and Hamming distance of the 

instruction words, and it has been validated using the 

MiBench benchmark suite [8]. Also, different types 

of memory accesses and pipeline stalls have been 

considered. 

Compared with previous models, the new model 

provides; 

1) equal or better accuracy as compared to  [3], 

[7], and [9]. But this comparison might not be 

applicable to other previous works. 

2) does not need cycle-accurate simulation that 

improves the simulation speed ( unlike the model 

[4]). 

3) is validated  by  a  physical  hardware  

implementation    using MiBench [8] benchmarks that 

are considered as representatives for  embedded 

applications. 

4) proposes a  simpler  model  for  estimating the  

inter in- struction energy consumption that improves 

the simulation speed of large workloads.  

5) is suitable for a wide range of applications (unlike 

application specific estimation models such as the 

model[6], [12]). 

6) considers the energy consumption of Flash 

memory (unlike [4], [5], [7], [9], [11], and [6]) and 

SRAM (unlike [4], [5], [7], and [9]). Those previous 

works that consider memory units usually report the 

energy consumption of memory units as a whole. 

However, here, the energy consumptions of SRAM 

and FLASH units have been considered separately, 

enabling designers to analyze and optimize the 

energy consumption of each unit individually. 

Most of the studies calculate the model 

coefficients by running sequences of instructions and 

measuring the energy consumption of the system 

during the execution cycles of each instruction. But 

certain studies[7] have used a “black-box” or 

“stimulus-response” approach where a set of test 

programs are executed on the hardware platform, the 

energy consump- tion  is  measured,  and  the  model  

parameters  are  extracted using  the  regression  

methods.  As  this  approach  does  not require 

detailed information about the internal structure of the 

processor, it improves the model retargetability. This 

model is similar to [4] and it is tested by executing 

randomly generated instructions on an ARM7TDMI 

core. It only estimates the  energy consumption of the 

processor and does not cover the energy consumption 

of memories or peripherals. 

Here, a new simplified version of  the 

processor energy estimation model has been 

introduced. The parameters of this simplified model 

do not require cycle-accurate simulation. The energy 

consumption of memories is also modelled [1 1 ]  but 

with a smaller number of parameters. For hardware 

energy measurement a stimulus-response approach 

similar to [7] has been used. 

 II. Measurement Method and System Architecture 

 
Fig. 1.   Architecture of our measurement system 

Precise measurement of the energy is one of 

the most important challenges in utilizing 

measurement-based methods. Some measurement-

based studies [13],[1],[14] calculate the energy 

consumption by reading the average current drawn by 

the system from the power supply. We have used a 

similar approach by placing a 1-ohm resistor at the 

power supply pin of the microcontroller. The 

measured current (which is read by a high frequency 

oscilloscope) and the application execution time are 

sent to the host computer for calculating the energy 

consumption. Fig. 1 illustrates this architecture. 

Here, an AT91SAM7X256 microcontroller 

[15] (based     on ARM9TDMI processor core) is 

used as the target platform. The internal structure of 

this microcontroller is shown in Fig. 2. As we only 

concentrate on the energy consumption  of  the  

processor  core,  SRAM  and  Flash,  all other 

modules are disabled by setting the appropriate flags 

in the initialization part of the program source code. 

The Flash memory is used for storing the code and 

read-only data while the SRAM is utilized as runtime 

data memory. The  ARM9TDMI core  is  a  32-bit  

RISC  microprocessor specialized for low-power 

applications and it is capable of achieving very high 

MIPS per watt with a five-stage pipeline and cache 

memory. The pipeline stages include instruction fetch 

(IF), decode (ID), and execute (EX), memory (M) and 

write back(WR). ARM9TDMI  is a successor to the 

popular  
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ARM7TDMI core. ARM9 supports both 32-bit 

ARM and 16-bit Thumb instruction sets. 

 

 
Fig. 2.   Microcontroller internal  structure.  Our  

proposed  model  estimates the energy consumption of 

the CPU, Flash memory, SRAM, and memory controller. 

 

Proposed energy consumption model 
Most software programs that run on 

embedded processors consist of two parts. 

1) An initialization part that configures system 

modules, initializes program variables, etc. This part 

of the pro- gram is executed only once at the start 

of the program in order that the system gets ready to 

perform its main operation. 

2) The main part that is usually implemented as an 

endless loop. 

From an energy consumption viewpoint, we 

can ignore the initialization part and assume that the 

system always operates in its main part. This is 

because when we turn an embedded system on, it is 

in the initialization phase for only few micro 

seconds and then it goes into the main phase where 

it operates for hours. This implies that almost all the 

energy consumption of an embedded system is 

because of the main phase and not  the  

initialization  phase.  Based  on  this  assumption,  in 

this paper, we do not consider applications 

where there is no differentiation between 

initialization and main parts. 

     The total energy consumption of each 

instruction is expressed as the sum of fetch energy 

(Efetch), decode  

 

 

 

 

 

 

 

 

 

energy (Edecode), execute energy (Eexecute 

),memory state (Ememory), write back (Ewrite) and 

static energy (Estatic ), where 
𝐸𝑓𝑒𝑡𝑐ℎ =  𝐸𝑐𝑛𝑡𝑟(𝑐𝑜𝑑𝑒)  +

 𝐸𝐹𝑙𝑎𝑠ℎ(𝑐𝑜𝑑𝑒)  +  𝐸𝐼𝐹  

𝐸𝑑𝑒𝑐𝑜𝑑𝑒 =  𝐸𝐼𝐷 

𝐸𝑒𝑥𝑒𝑐𝑢𝑡𝑒 =  𝐸𝐸𝑋 +  𝐸𝑐𝑛𝑡𝑟(𝑑𝑎𝑡𝑎)  

+  𝐸𝐹𝑙𝑎𝑠ℎ(𝑑𝑎𝑡𝑎)  

+  𝐸𝑆𝑅𝐴𝑀  +  𝐸𝑠𝑡𝑎𝑙𝑙  (1)
 

(Ecntr(code)  is the amount of energy 

consumed in the memory controller  caused  by  the  

code,  Ecntr(data)   is  the  amount  of energy 

consumed in the memory controller caused by the 

data, EFlash(code)   is the amount of energy 

consumed in the Flash memory caused by the code 

and EFlash(data)  is the amount of energy 

consumed in the Flash memory caused by the data.) 

Since we have disabled all modules except the core, 

memories and the memory  controller,  there  must  

be  no  instruction that causes energy consumption 

in the peripherals. However, the microcontroller 

datasheet does not  clearly specify how the 

peripherals are disabled. If their power supply lines 

are completely cut off, then there will be no 

Estatic. But if the supply lines are not cut off, and 

hence, the circuitry is turned on but inactive, they 

may consume a small amount of static power, which 

means Estatic  will not be zero. 

 

Fig. 3.   Read access count of the Flash memory and 

SRAM in the MiBench benchmark suite applications 

Ememory  only depends on the number of memory 

accesses (for data transfer) during the program 

execution. Note that cal- culating some of these 

energy segments needs cycle-accurate  simulation of 

the program, however, we estimate them using other 

parameters that can be calculated during instruction-

level simulations. 
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A.  Memory Energy 

Consumption Model  

Generally, the energy cost of accessing the 

RAM can be modeled with the number of read and 

written bytes. Analyzing the MiBench benchmark 

suite[8] applications (Fig. 3) shows that about 30% of 

the memory accesses target the Flash memory. To 

analyze the difference between the energy 

consumption of the Flash memory and SRAM, 

another experiment was  conducted with  two  sets  

of  test  programs (Benchmark 1 and Benchmark 2). 

These benchmarks are iden- tical, except for the target 

address space. While the target ad- dress space of 

Benchmark 1 is within the Flash (0×100 000), the 

target address space of Benchmark 2 is within the 

SRAM (0×200 000). These benchmarks were 

executed with different target addresses and  their 

energy consumptions were mea- sured. We observed 

that the average energy consumption of Benchmark 1 

is 20% higher than that of Benchmark 2. The results 

also show that the energy consumption of  

accesses to different locations of the same memory 

module (SRAM or Flash) are almost constant. 

Hence, only the number and type of the memory 

accesses are considered in the memory energy 

estimation model and not the target address. Due to 

the notable share of the Flash memory access in the 

total application memory accesses (see Fig. 3) and the 

difference between the energy consumption of Flash 

memory accesses and SRAM accesses, two separate 

energy parameters are considered for  the  Flash  and  

SRAM  read  accesses  in  our energy  model.  In  the  

context  of  embedded systems, Flash write 

operations are relatively rare and are usually 

performed during the offline phase 

(programming/configuration phase) of an embedded 

system where system can be connected to elec- tricity 

power lines and does not use battery. However, during 

the normal operation of embedded systems where 

system is battery-operated (and hence energy 

consumption and energy estimation is prominent), the 

system usually accesses the Flash by read operations 

(for example to fetch instructions), and hence, we 

have to consider Flash read operations in energy 

estimation. 

 

B. Processor Core Energy Consumption Model 

The energy consumption of the different 

pipeline stages are grouped together as the processor 

core energy consumption. Some  previous  studies  

have  shown  that  the  energy  consumption of the 

processor core during the execution of an instruction 

can be divided into three parts: i) the base energy 

cost, which only depends on the current instruction, 

ii) the interinstruction cost, which is the amount of 

energy consumed by the processor during the 

consecutive execution of different instructions, and 

iii) the pipeline stall cost [4], [5], [7], [9] 

In most cases, the interinstruction energy 

cost is about 5% of the base instruction cost [9]. 

Thus, we simplify the model by ignoring detailed 

interinstruction cost estimations and use other 

parameters, considering the internal structure of the 

processor core [16]. These parameters include the 

Hamming distance and weight of the instructions, 

number of bit flips in the register bank, and the 

number of shift operations. 

1)   Instructions Word Hamming Distance:  Any 

change in the input signals of a circuit can cause a 

series of activities in the circuit. In some designs 

these subsequent activities and their corresponding 

energy consumption have a direct relation- ship to the 

changes in the input signals. To exploit this idea in our 

proposed model, the effect of the instruction 

Hamming distance on  the  core  power  consumption 

was  analyzed by running a series of benchmarks. 

Each of these benchmarks contains a  large amount 

of  two  different types of  instruc- tions. Benchmark 

1 comprises two separate blocks where all instructions 

of each block are of the same type. Benchmark 2 

orders the instructions in an interleaved manner where 

each instruction of type A is followed by an 

instruction of type B and vice versa.   The energy 

consumption of Benchmark 2 shows about 6% 

increase over that of Benchmark 1. We model this 

portion of energy consumption by simply counting the  

Hamming distance between the  instructions during 

the execution flow 

2) Instructions Word Weight: The energy 

consumption of an instruction also depends on the 

operands’ weight (number of “1”) which is the 

result of using dynamic CMOS logic in the 

design of ARM9TDMI [11]. According to our 

exper- iments,   we can consider a single weight 

energy coefficient for all instructions that will cause 

a negligible error in energy estimation but it will 

make the model simpler. Therefore, the instruction 

weight is added as a parameter to our model. 

3)  Number of Shift Operation:  To observe the 

possible effects of the shift operation on the energy 

consumption of the system, we conducted two 

different sets of experiments. One group consists of 

a large number of instructions with shifted operands 

while the other one contains the same instructions 

but without using this option. The experiments were 

repeated for all instructions that can use the shifted 

operand option and the results show that the shifted 

version consumes up to 28% more energy than 

normal version.  
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4) Register Bank Bit Flips: A number of 

benchmarks based on MVN instruction were 

prepared to observe the effect of the register bank 

activity on the system energy consumption. The 

MVN instruction reads the value of the source 

operand, performs a bitwise NOT operation and 

then assigns the result to the destination register. 

Table I lists the benchmarks used in this 

experiment. 
TABLE 1- Register Bank Benchmarks 

No: Benchmar

k 1 

Benchmar

k 2 

Benchmar

k 3 

1 MVN 

R1,R2 

MVN 

R1,R1 

MVN 

R1,R2 

2 MVN 

R1,R2 

MVN 

R1,R1 

MVN 

R1,R2 

.. .. .. .. 

1000

0 

MVN 

R1,R2 

MVN 

R1,R1 

MVN 

R1,R2 

In all benchmarks, there will be no further 

activity on the instruction bus or data bus after 

executing the last MOV instruction. In Benchmark 

1, only the first MVN command results in register 

bank activity and the consequent instructions write 

the same 0×FFFFFFFF value into R1 register. 

Benchmark 2 uses the same register for input and 

output and causes 32 bit flips per cycle in R1 

register. Energy measurement of Benchmark 2 

shows 3% increase over that of Benchmark 1. To 

clarify whether the energy consumption increase is 

related to the Hamming distance or the weight of 

the registers, we conducted another experiment 

using Benchmark 3. Benchmark 3 initializes all the 

registers to value 0×FFFFFFFF in order to 

increase the total register bank weight to the 

maximum possible value. Benchmark 1 on the other 

hand, initializes all the registers to 0 that lowers the 

total weight of the register bank to the minimum 

possible value. The energy measurement result  of  

Benchmark  3  shows  about  0.1%  deviation  from 

the energy consumption of Benchmark 1 that 

indicates that the register bank energy consumption 

is more related to the Hamming distance than the 

weight. Considering the outcome of this 

experiment, the number of bit flips in the register 

bank was added as a new parameter to the energy 

estimation model. 

 

 

 

 

 

 

 

5)   Pipeline  Stall:  So  far,  all  parts  of  (6)  are  

covered with the exception of Estall . There are 

some instructions that can cause a pipeline stall that 

will lead to additional energy consumption in the 

system. These instructions include some types of 

memory access, multicycle instructions (such as 

MUL), and the wrong branch prediction. Hence, 

only the EX stage of the pipeline is active and the 

other stages are stalled and consume a constant 

amount of energy. 

According to their duration, pipeline stalls 

can be grouped as follows. 

a) The fixed length pipeline stall that delays the 

execution for a constant amount of cycles. (e.g., the 

SWP instruc- tion that takes four cycles to execute). 

The extra energy consumption of these pipeline stalls 

is added to the base energy cost of the corresponding 

instructions. 

b) The variable length pipeline stall whose duration 

de- pends on some items like operand values, 

previously accessed memory addresses and correct 

prediction of target of Jump instructions. 

Estimating the exact energy consumption of the 

variable length pipeline stalls needs cycle-accurate 

simulation of the program. We analyzed the 

MiBench benchmark suite [8] applications and  

chose the  average energy consumption of the  

each  multicycle instruction as  the  base  energy 

cost  of that instruction. Although this 

approximation method causes a small error in the 

energy estimation model, it eliminates the need for 

cycle-accurate simulation. 

 

Analysis 
To compute the coefficients of the model, 

a statistical method known as regression analysis 

[15] is used. The energy model is assumed to be a 

linear polynomial function and the factors are 

extracted using linear regression analysis. In the 

linear regression analysis the model is in the 

following form [15] 

𝑦 =  𝑐0 +  𝑐1 𝑥1 +  𝑐2 𝑥2 + . . . + 𝑐𝑛 𝑥𝑛  +  𝑒 

where ci  is the regression coefficient , xi  is the 

data vector, y is the dependant value and e is the 

error of approximation. To find the ci  coefficients 

the least square method [15] was used. Given M  

independent equations, regression analysis tries to 

extract the unknown coefficients by assigning 

different values to  them,  re-evaluating the  

polynomials and  comparing  the result of each 

polynomial with the corresponding dependant value 

y.  This procedure, known as fitting [15], is 

repeated for all available equations until either 

convergence of all the coefficient values or reaching 

the maximum iteration.To provide the required 
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equations for the fitting procedure,60 special test 

programs were prepared and their energy 

consumption were measured. Each test program was 

designed to magnify the effect of one specific 

model parameter. This improves the accuracy of 

the fitting procedure by reducing the regression 

model’s complexity. The combination of energy 

measurement values  of  these  benchmarks and  

their  profile report (analyzed with Sim-profile), 

form 60 equations for the fitting procedure. The 

ARM9TDMI datasheet indicates that most 

instructions have two different forms that only one 

of them updates the flag register. For example 

ADD and ADDS both perform the addition 

operation but only ADDS updates the flag registers 

(e.g., Z flag is set when the result is zero or V 

flag when an overflow occurs). In the first version 

of the model, one coefficient was  assigned  for  

each  one  of  these  pairs.  But in order to achieve 

more accurate results without imposing unnecessary 

complexity on the model, for some instruction pairs  

separate coefficients is  assigned for  each  member 

of the pair. In order to find the most effective 

instructions in total application energy consumption, 

the MiBench benchmark suite applications were 

analyzed with the  proposed energy model. The top 

10 contributors are listed in Fig. 4. According to the 

results, the two versions of ADD and MOV 

instructions were separated, which improved the 

estimation accuracy of the model and confirmed 

the validity of our decision. 

 
Fig. 5.   Energy estimation model derivation process. 

Fig. 5 summarizes the approach that we 

have followed in this paper to develop the energy 

estimation model. It also  

 

 

 

 

 

 

 

 

 

illustrates  the  flow that  the  user  of  our  tool  

must  follow to estimate the energy consumption of 

the application and identify the hotspots of the 

source code. 

 
TABLE II Final Results of Regression 

Instruction parameters 

Parameter Energy(nJ) 

ADD 0.89 

RSB 1.153 

BIC 1.049 

MVN  1.13 

AND 1.173 

CMP 0.978 

ADC 1.127 

LDR 1.84 

ORR 1.131 

B 0.79 

CMN 0.976 

SUB 1.143 

MOV 1.284 

SBC 1.113 

 

Results 
The final results of the regression analysis 

is summarized in Table II. To measure the quality of 

the regression we used a criterion named coefficient 

of determination, which is denoted by R2 [15]. The 

reported coefficient of determination for our final 

regression analysis is 0.9987, which means 

99.87% of all variations of the test applications 

energy consumption are captured by the proposed 

energy estimation model. 

In order to test the accuracy of the model 

in real world applications, a set of experiments were 

conducted on MiBench benchmark suite 

applications. The energy consumption of all 

applications are estimated with less than6%  error. 

Some sources of  error  in  our  energy estimation 

model are ignoring the Hamming distance and 

weight of address  bus  and  data  bus  and  using  a  

constant  value  to model  the  energy  consumption 

of  variable  length  pipeline stalls to avoid cycle-

accurate simulation of the system. Considering the 

value of R2 it is expected to achieve better 

accuracy, which means the test programs can be 

improved to cover all aspects of microcontroller 

energy consumption. Having the final regression 

results, the energy coefficients were embedded in 

the Sim-profile simulator from Sim- pleScalar 

toolset to make the process of energy estimation 

easier. Since Sim-profile has the ability to profile 
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the applica- tion based on a given simulation 

parameter, adding the energy consumption 

estimation ability makes it  an  energy profiler 

tool. This profiler tool is called MEET. MEET 

can be used for finding blocks of software with 

high energy consumption. It  can  also  provide 

useful  guidelines about  optimizing the energy 

consumption by reporting the cause of high 

energy consumption in hot regions. 

 

Conclusion 
An instruction-level energy estimation model 

for a microcontroller-based embedded system was  

presented. By combining  similar  energy  coefficient 

values,  the  presented model became much simpler 

than most proposed models that can  speed  up  the  

energy  estimation  process  and  therefore the 

development of the embedded systems. The model 

was validated against a physical hardware platform, 

and the error of estimation for a number of 

applications from the MiBench benchmark suite was 

less than 6%. Retargetability is another advantage of 

our proposed model that makes  it  easy  to  adjust  

the  model  coefficients for  a new platform. The 

model coefficients can be calibrated by measuring 

the energy consumption of test programs for the 

new platform and rerunning the regression analysis. 

Also, a tool called MEET was developed, 

which receives a binary ARM9 application and 

profiles the energy consumption of the application on 

the microcontroller. The results can identify the 

hotspots of the code and help in selecting the best 

coding technique in order to optimize the total energy 

consumption of the application. 
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