
[Devi et al., 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[46-53]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

An Efficient Instruction-Level Energy Estimation Model for Embedded Systems
Devi. K. S*, Prof. V. Gopi

* PSN College of Engineering & Technology, Tirunelveli, Tamil Nadu, India

deviksudhir@gmail.com

Abstract
 To optimize the energy consumption embedded systems, the estimation of energy consumption of the

embedded applications are very important. This paper proposes a simple but effective instruction-level energy

estimation model for embedded systems. For case study purposes, the model parameters were determined for a

commonly used ARM9TDMI-based microcontroller. The total energy consists of the energy consumed by the

processor core, flash memory, memory controller, SRAM etc. The model parameters that are determined includes

op-code of instructions, number of shift operations, register bank bit flips, instructions weight and their Hamming

distance, different types of memory accesses, the effect of pipeline stalls etc. To validate the proposed model, a

physical hardware platform was developed which is having energy measurement capabilities. For several

experiments conducted on various embedded applications from MiBench benchmark suite and less than 6% error

in the energy consumption estimation was shown. Also an energy profiler tool was developed for the systems that

use ARM9TDMI processors which provides valuable information and guidelines for software energy optimization.

Keywords: Embedded System.

 Introduction
Embedded systems play a major role inday to day life

of people in different areas. Mobile phones, washing

machines, satellites etc are a few examples for

devices that are having a processor embedded on

them. A wide group of systems are mobile, battery

powered devices, with limited source of energy.

Thus, consumption of energy is an important aspect

in embedded system design phase- for any

application, itself. This helps the designers in

optimizing the battery lifetime. Software is

responsible for the large portion of energy

consumption, in the case of an embedded system.

Hence, an efficient model is necessary for the energy

estimation. Mainly, there are two models for

embedded instruction level energy optimization:

measurement-based and simulation-based.

In the simulation-based approach a

simulation model of the target hardware is used to

run the applications and calculate the energy

consumption of each part of the system which may

be as detailed as gate level[2] or as abstract as

behavioral level[3]. This approach needs the

simulation model of all hardware modules that are

mostly unavailable or very expensive. Also,

evaluating the impact of a small change in an

instruction opcode or operands on the total energy

consumption of the system requires rerunning the

simulation.

Measurement-based methods use data

obtained from a physical target device. Most of the

models [4],[5],[6], associate the instructions with

the corresponding energy cost. The total application

energy consumption is the aggregate cost of all

executed instructions that can be calculated by

running the application in an emulator. The main

advantage of measurement-based methods is high

accuracy in the energy estimation due to the real

values obtained from the target platform.

It should be noted that for most of the

commercially used microcontrollers (e.g.,

AT91SAM7X256 considered in this paper) there is

no authentic SPICE (or any other detailed) sim-

ulation model; hence, it is not possible to adopt a

simulation- based approach. Furthermore, we believe

that as measurement- based approaches use physical

and real systems, they are al- ways more accurate

than simulation-based approaches. Hence, in this

paper we adopt a measurement-based approach.

Energy estimation models are also

categorized according to their scope. The models

presented in [4], [5], and [7] only model the

processor core and the model presented in [6]

models an embedded system including a

microcontroller, external RAM, and external A/D

converter.

In this paper, we introduce a new

instruction-level energy estimation model and tool

http://www.ijesrt.com/

[Devi et al., 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[46-53]

for an ARM9TDMI-based micro- controller

including the processor core, internal Flash and

SRAM memories. While our model is simple

enough to be implemented in any instruction set

simulator, it provides good accuracy and can be

used to estimate the energy consump- tion of the

processor core (ARM9TDMI), SRAM, and Flash

memory units of an embedded system. Also, the

process of deriving the model allows for easy

recalibration of the model for other platforms. The

model is based on parameters such as instructions

type, number of executed shift operations, register

bank bit flips, weight and Hamming distance of the

instruction words, and it has been validated using the

MiBench benchmark suite [8]. Also, different types

of memory accesses and pipeline stalls have been

considered.

Compared with previous models, the new model

provides;

1) equal or better accuracy as compared to [3],

[7], and [9]. But this comparison might not be

applicable to other previous works.

2) does not need cycle-accurate simulation that

improves the simulation speed (unlike the model

[4]).

3) is validated by a physical hardware

implementation using MiBench [8] benchmarks that

are considered as representatives for embedded

applications.

4) proposes a simpler model for estimating the

inter in- struction energy consumption that improves

the simulation speed of large workloads.

5) is suitable for a wide range of applications (unlike

application specific estimation models such as the

model[6], [12]).

6) considers the energy consumption of Flash

memory (unlike [4], [5], [7], [9], [11], and [6]) and

SRAM (unlike [4], [5], [7], and [9]). Those previous

works that consider memory units usually report the

energy consumption of memory units as a whole.

However, here, the energy consumptions of SRAM

and FLASH units have been considered separately,

enabling designers to analyze and optimize the

energy consumption of each unit individually.

Most of the studies calculate the model

coefficients by running sequences of instructions and

measuring the energy consumption of the system

during the execution cycles of each instruction. But

certain studies[7] have used a “black-box” or

“stimulus-response” approach where a set of test

programs are executed on the hardware platform, the

energy consump- tion is measured, and the model

parameters are extracted using the regression

methods. As this approach does not require

detailed information about the internal structure of the

processor, it improves the model retargetability. This

model is similar to [4] and it is tested by executing

randomly generated instructions on an ARM7TDMI

core. It only estimates the energy consumption of the

processor and does not cover the energy consumption

of memories or peripherals.

Here, a new simplified version of the

processor energy estimation model has been

introduced. The parameters of this simplified model

do not require cycle-accurate simulation. The energy

consumption of memories is also modelled [1 1] but

with a smaller number of parameters. For hardware

energy measurement a stimulus-response approach

similar to [7] has been used.

 II. Measurement Method and System Architecture

Fig. 1. Architecture of our measurement system

Precise measurement of the energy is one of

the most important challenges in utilizing

measurement-based methods. Some measurement-

based studies [13],[1],[14] calculate the energy

consumption by reading the average current drawn by

the system from the power supply. We have used a

similar approach by placing a 1-ohm resistor at the

power supply pin of the microcontroller. The

measured current (which is read by a high frequency

oscilloscope) and the application execution time are

sent to the host computer for calculating the energy

consumption. Fig. 1 illustrates this architecture.

Here, an AT91SAM7X256 microcontroller

[15] (based on ARM9TDMI processor core) is

used as the target platform. The internal structure of

this microcontroller is shown in Fig. 2. As we only

concentrate on the energy consumption of the

processor core, SRAM and Flash, all other

modules are disabled by setting the appropriate flags

in the initialization part of the program source code.

The Flash memory is used for storing the code and

read-only data while the SRAM is utilized as runtime

data memory. The ARM9TDMI core is a 32-bit

RISC microprocessor specialized for low-power

applications and it is capable of achieving very high

MIPS per watt with a five-stage pipeline and cache

memory. The pipeline stages include instruction fetch

(IF), decode (ID), and execute (EX), memory (M) and

write back(WR). ARM9TDMI is a successor to the

popular

http://www.ijesrt.com/

[Devi et al., 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[46-53]

ARM7TDMI core. ARM9 supports both 32-bit

ARM and 16-bit Thumb instruction sets.

Fig. 2. Microcontroller internal structure. Our

proposed model estimates the energy consumption of

the CPU, Flash memory, SRAM, and memory controller.

Proposed energy consumption model
Most software programs that run on

embedded processors consist of two parts.

1) An initialization part that configures system

modules, initializes program variables, etc. This part

of the pro- gram is executed only once at the start

of the program in order that the system gets ready to

perform its main operation.

2) The main part that is usually implemented as an

endless loop.

From an energy consumption viewpoint, we

can ignore the initialization part and assume that the

system always operates in its main part. This is

because when we turn an embedded system on, it is

in the initialization phase for only few micro

seconds and then it goes into the main phase where

it operates for hours. This implies that almost all the

energy consumption of an embedded system is

because of the main phase and not the

initialization phase. Based on this assumption, in

this paper, we do not consider applications

where there is no differentiation between

initialization and main parts.

 The total energy consumption of each

instruction is expressed as the sum of fetch energy

(Efetch), decode

energy (Edecode), execute energy (Eexecute

),memory state (Ememory), write back (Ewrite) and

static energy (Estatic), where
𝐸𝑓𝑒𝑡𝑐ℎ = 𝐸𝑐𝑛𝑡𝑟(𝑐𝑜𝑑𝑒) +

 𝐸𝐹𝑙𝑎𝑠ℎ(𝑐𝑜𝑑𝑒) + 𝐸𝐼𝐹

𝐸𝑑𝑒𝑐𝑜𝑑𝑒 = 𝐸𝐼𝐷

𝐸𝑒𝑥𝑒𝑐𝑢𝑡𝑒 = 𝐸𝐸𝑋 + 𝐸𝑐𝑛𝑡𝑟(𝑑𝑎𝑡𝑎)

+ 𝐸𝐹𝑙𝑎𝑠ℎ(𝑑𝑎𝑡𝑎)

+ 𝐸𝑆𝑅𝐴𝑀 + 𝐸𝑠𝑡𝑎𝑙𝑙 (1)

(Ecntr(code) is the amount of energy

consumed in the memory controller caused by the

code, Ecntr(data) is the amount of energy

consumed in the memory controller caused by the

data, EFlash(code) is the amount of energy

consumed in the Flash memory caused by the code

and EFlash(data) is the amount of energy

consumed in the Flash memory caused by the data.)

Since we have disabled all modules except the core,

memories and the memory controller, there must

be no instruction that causes energy consumption

in the peripherals. However, the microcontroller

datasheet does not clearly specify how the

peripherals are disabled. If their power supply lines

are completely cut off, then there will be no

Estatic. But if the supply lines are not cut off, and

hence, the circuitry is turned on but inactive, they

may consume a small amount of static power, which

means Estatic will not be zero.

Fig. 3. Read access count of the Flash memory and

SRAM in the MiBench benchmark suite applications

Ememory only depends on the number of memory

accesses (for data transfer) during the program

execution. Note that cal- culating some of these

energy segments needs cycle-accurate simulation of

the program, however, we estimate them using other

parameters that can be calculated during instruction-

level simulations.

http://www.ijesrt.com/

[Devi et al., 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[46-53]

A. Memory Energy

Consumption Model

Generally, the energy cost of accessing the

RAM can be modeled with the number of read and

written bytes. Analyzing the MiBench benchmark

suite[8] applications (Fig. 3) shows that about 30% of

the memory accesses target the Flash memory. To

analyze the difference between the energy

consumption of the Flash memory and SRAM,

another experiment was conducted with two sets

of test programs (Benchmark 1 and Benchmark 2).

These benchmarks are iden- tical, except for the target

address space. While the target ad- dress space of

Benchmark 1 is within the Flash (0×100 000), the

target address space of Benchmark 2 is within the

SRAM (0×200 000). These benchmarks were

executed with different target addresses and their

energy consumptions were mea- sured. We observed

that the average energy consumption of Benchmark 1

is 20% higher than that of Benchmark 2. The results

also show that the energy consumption of

accesses to different locations of the same memory

module (SRAM or Flash) are almost constant.

Hence, only the number and type of the memory

accesses are considered in the memory energy

estimation model and not the target address. Due to

the notable share of the Flash memory access in the

total application memory accesses (see Fig. 3) and the

difference between the energy consumption of Flash

memory accesses and SRAM accesses, two separate

energy parameters are considered for the Flash and

SRAM read accesses in our energy model. In the

context of embedded systems, Flash write

operations are relatively rare and are usually

performed during the offline phase

(programming/configuration phase) of an embedded

system where system can be connected to elec- tricity

power lines and does not use battery. However, during

the normal operation of embedded systems where

system is battery-operated (and hence energy

consumption and energy estimation is prominent), the

system usually accesses the Flash by read operations

(for example to fetch instructions), and hence, we

have to consider Flash read operations in energy

estimation.

B. Processor Core Energy Consumption Model

The energy consumption of the different

pipeline stages are grouped together as the processor

core energy consumption. Some previous studies

have shown that the energy consumption of the

processor core during the execution of an instruction

can be divided into three parts: i) the base energy

cost, which only depends on the current instruction,

ii) the interinstruction cost, which is the amount of

energy consumed by the processor during the

consecutive execution of different instructions, and

iii) the pipeline stall cost [4], [5], [7], [9]

In most cases, the interinstruction energy

cost is about 5% of the base instruction cost [9].

Thus, we simplify the model by ignoring detailed

interinstruction cost estimations and use other

parameters, considering the internal structure of the

processor core [16]. These parameters include the

Hamming distance and weight of the instructions,

number of bit flips in the register bank, and the

number of shift operations.

1) Instructions Word Hamming Distance: Any

change in the input signals of a circuit can cause a

series of activities in the circuit. In some designs

these subsequent activities and their corresponding

energy consumption have a direct relation- ship to the

changes in the input signals. To exploit this idea in our

proposed model, the effect of the instruction

Hamming distance on the core power consumption

was analyzed by running a series of benchmarks.

Each of these benchmarks contains a large amount

of two different types of instruc- tions. Benchmark

1 comprises two separate blocks where all instructions

of each block are of the same type. Benchmark 2

orders the instructions in an interleaved manner where

each instruction of type A is followed by an

instruction of type B and vice versa. The energy

consumption of Benchmark 2 shows about 6%

increase over that of Benchmark 1. We model this

portion of energy consumption by simply counting the

Hamming distance between the instructions during

the execution flow

2) Instructions Word Weight: The energy

consumption of an instruction also depends on the

operands’ weight (number of “1”) which is the

result of using dynamic CMOS logic in the

design of ARM9TDMI [11]. According to our

exper- iments, we can consider a single weight

energy coefficient for all instructions that will cause

a negligible error in energy estimation but it will

make the model simpler. Therefore, the instruction

weight is added as a parameter to our model.

3) Number of Shift Operation: To observe the

possible effects of the shift operation on the energy

consumption of the system, we conducted two

different sets of experiments. One group consists of

a large number of instructions with shifted operands

while the other one contains the same instructions

but without using this option. The experiments were

repeated for all instructions that can use the shifted

operand option and the results show that the shifted

version consumes up to 28% more energy than

normal version.

http://www.ijesrt.com/

[Devi et al., 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[46-53]

4) Register Bank Bit Flips: A number of

benchmarks based on MVN instruction were

prepared to observe the effect of the register bank

activity on the system energy consumption. The

MVN instruction reads the value of the source

operand, performs a bitwise NOT operation and

then assigns the result to the destination register.

Table I lists the benchmarks used in this

experiment.
TABLE 1- Register Bank Benchmarks

No: Benchmar

k 1

Benchmar

k 2

Benchmar

k 3

1 MVN

R1,R2

MVN

R1,R1

MVN

R1,R2

2 MVN

R1,R2

MVN

R1,R1

MVN

R1,R2

..

1000

0

MVN

R1,R2

MVN

R1,R1

MVN

R1,R2

In all benchmarks, there will be no further

activity on the instruction bus or data bus after

executing the last MOV instruction. In Benchmark

1, only the first MVN command results in register

bank activity and the consequent instructions write

the same 0×FFFFFFFF value into R1 register.

Benchmark 2 uses the same register for input and

output and causes 32 bit flips per cycle in R1

register. Energy measurement of Benchmark 2

shows 3% increase over that of Benchmark 1. To

clarify whether the energy consumption increase is

related to the Hamming distance or the weight of

the registers, we conducted another experiment

using Benchmark 3. Benchmark 3 initializes all the

registers to value 0×FFFFFFFF in order to

increase the total register bank weight to the

maximum possible value. Benchmark 1 on the other

hand, initializes all the registers to 0 that lowers the

total weight of the register bank to the minimum

possible value. The energy measurement result of

Benchmark 3 shows about 0.1% deviation from

the energy consumption of Benchmark 1 that

indicates that the register bank energy consumption

is more related to the Hamming distance than the

weight. Considering the outcome of this

experiment, the number of bit flips in the register

bank was added as a new parameter to the energy

estimation model.

5) Pipeline Stall: So far, all parts of (6) are

covered with the exception of Estall . There are

some instructions that can cause a pipeline stall that

will lead to additional energy consumption in the

system. These instructions include some types of

memory access, multicycle instructions (such as

MUL), and the wrong branch prediction. Hence,

only the EX stage of the pipeline is active and the

other stages are stalled and consume a constant

amount of energy.

According to their duration, pipeline stalls

can be grouped as follows.

a) The fixed length pipeline stall that delays the

execution for a constant amount of cycles. (e.g., the

SWP instruc- tion that takes four cycles to execute).

The extra energy consumption of these pipeline stalls

is added to the base energy cost of the corresponding

instructions.

b) The variable length pipeline stall whose duration

de- pends on some items like operand values,

previously accessed memory addresses and correct

prediction of target of Jump instructions.

Estimating the exact energy consumption of the

variable length pipeline stalls needs cycle-accurate

simulation of the program. We analyzed the

MiBench benchmark suite [8] applications and

chose the average energy consumption of the

each multicycle instruction as the base energy

cost of that instruction. Although this

approximation method causes a small error in the

energy estimation model, it eliminates the need for

cycle-accurate simulation.

Analysis
To compute the coefficients of the model,

a statistical method known as regression analysis

[15] is used. The energy model is assumed to be a

linear polynomial function and the factors are

extracted using linear regression analysis. In the

linear regression analysis the model is in the

following form [15]

𝑦 = 𝑐0 + 𝑐1 𝑥1 + 𝑐2 𝑥2 + . . . + 𝑐𝑛 𝑥𝑛 + 𝑒

where ci is the regression coefficient , xi is the

data vector, y is the dependant value and e is the

error of approximation. To find the ci coefficients

the least square method [15] was used. Given M

independent equations, regression analysis tries to

extract the unknown coefficients by assigning

different values to them, re-evaluating the

polynomials and comparing the result of each

polynomial with the corresponding dependant value

y. This procedure, known as fitting [15], is

repeated for all available equations until either

convergence of all the coefficient values or reaching

the maximum iteration.To provide the required

http://www.ijesrt.com/

[Devi et al., 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[46-53]

equations for the fitting procedure,60 special test

programs were prepared and their energy

consumption were measured. Each test program was

designed to magnify the effect of one specific

model parameter. This improves the accuracy of

the fitting procedure by reducing the regression

model’s complexity. The combination of energy

measurement values of these benchmarks and

their profile report (analyzed with Sim-profile),

form 60 equations for the fitting procedure. The

ARM9TDMI datasheet indicates that most

instructions have two different forms that only one

of them updates the flag register. For example

ADD and ADDS both perform the addition

operation but only ADDS updates the flag registers

(e.g., Z flag is set when the result is zero or V

flag when an overflow occurs). In the first version

of the model, one coefficient was assigned for

each one of these pairs. But in order to achieve

more accurate results without imposing unnecessary

complexity on the model, for some instruction pairs

separate coefficients is assigned for each member

of the pair. In order to find the most effective

instructions in total application energy consumption,

the MiBench benchmark suite applications were

analyzed with the proposed energy model. The top

10 contributors are listed in Fig. 4. According to the

results, the two versions of ADD and MOV

instructions were separated, which improved the

estimation accuracy of the model and confirmed

the validity of our decision.

Fig. 5. Energy estimation model derivation process.

Fig. 5 summarizes the approach that we

have followed in this paper to develop the energy

estimation model. It also

illustrates the flow that the user of our tool

must follow to estimate the energy consumption of

the application and identify the hotspots of the

source code.

TABLE II Final Results of Regression

Instruction parameters

Parameter Energy(nJ)

ADD 0.89

RSB 1.153

BIC 1.049

MVN 1.13

AND 1.173

CMP 0.978

ADC 1.127

LDR 1.84

ORR 1.131

B 0.79

CMN 0.976

SUB 1.143

MOV 1.284

SBC 1.113

Results
The final results of the regression analysis

is summarized in Table II. To measure the quality of

the regression we used a criterion named coefficient

of determination, which is denoted by R2 [15]. The

reported coefficient of determination for our final

regression analysis is 0.9987, which means

99.87% of all variations of the test applications

energy consumption are captured by the proposed

energy estimation model.

In order to test the accuracy of the model

in real world applications, a set of experiments were

conducted on MiBench benchmark suite

applications. The energy consumption of all

applications are estimated with less than6% error.

Some sources of error in our energy estimation

model are ignoring the Hamming distance and

weight of address bus and data bus and using a

constant value to model the energy consumption

of variable length pipeline stalls to avoid cycle-

accurate simulation of the system. Considering the

value of R2 it is expected to achieve better

accuracy, which means the test programs can be

improved to cover all aspects of microcontroller

energy consumption. Having the final regression

results, the energy coefficients were embedded in

the Sim-profile simulator from Sim- pleScalar

toolset to make the process of energy estimation

easier. Since Sim-profile has the ability to profile

http://www.ijesrt.com/

[Devi et al., 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[46-53]

the applica- tion based on a given simulation

parameter, adding the energy consumption

estimation ability makes it an energy profiler

tool. This profiler tool is called MEET. MEET

can be used for finding blocks of software with

high energy consumption. It can also provide

useful guidelines about optimizing the energy

consumption by reporting the cause of high

energy consumption in hot regions.

Conclusion
An instruction-level energy estimation model

for a microcontroller-based embedded system was

presented. By combining similar energy coefficient

values, the presented model became much simpler

than most proposed models that can speed up the

energy estimation process and therefore the

development of the embedded systems. The model

was validated against a physical hardware platform,

and the error of estimation for a number of

applications from the MiBench benchmark suite was

less than 6%. Retargetability is another advantage of

our proposed model that makes it easy to adjust

the model coefficients for a new platform. The

model coefficients can be calibrated by measuring

the energy consumption of test programs for the

new platform and rerunning the regression analysis.

Also, a tool called MEET was developed,

which receives a binary ARM9 application and

profiles the energy consumption of the application on

the microcontroller. The results can identify the

hotspots of the code and help in selecting the best

coding technique in order to optimize the total energy

consumption of the application.

Reference
1. V. Tiwari, S. Malik, and A. Wolfe,

“Power analysis of embedded software: A

first step towards software power

minimization,” IEEE Trans. VLSI Systems,

vol. 2, no. 4, pp. 437–445, Dec. 1994.

2. B. Klass, D. E. Thomas, H. Schmit, and D. F.

Nagle, “Modeling inter- instruction energy

effects in a digital signal processor,” in

Proc. Digital Signal Processor, Power-

Driven Microarch. Workshop in Conjunction

with Int. Symp. Comput. Arch., Jun. 1998,

pp. 18–23.

3. G. Callou, P. Maciel, E. Tavares, E.

Andrade, B. Nogueira, C. Araujo, and P.

Cunha, “Energy consumption and execution

time estimation of embedded system

applications,” Microprocessors Microsyst.,

vol. 35, no. 4, pp. 426–440, 2011.

4. N. Chang, K. Kim, and H. G. Lee, “Cycle-

accurate energy consumption measurement

and analysis: Case study of ARM7TDMI,” in

Proc. ISLPED, 2000, pp. 185–190.

5. S. Nikolaidis, N. Kavvadias, T. Laopoulos, L.

Bisdounis, and S. Blionas, “Instruction level

energy modeling for pipelined processors,”

J. Embed- ding Comput., vol. 1, no. 3, pp.

317–324, Aug. 2005.

6. V. Konstantakos, A. Chatzigeorgiou, S.

Nikolaidis, and T. Laopoulos, “Energy

consumption estimation in embedded

systems,” IEEE Trans. Instrum. Meas., vol.

57, no. 4, pp. 797–804, Apr. 2008.

7. S. Lee, A. Ermedahl, and S. L. Min, “An

accurate instruction-level energy

consumption model for embedded RISC

processors.

8. M. R. Guthaus, J. S. Ringenberg, D. Ernst,

T. M. Austin, T. Mudge, and R. B. Brown,

“MiBench: A free, commercially

representative embedded benchmark suite,”

in Proc. IEEE Int. Workshop Workload

Characterization, Dec. 2001, pp. 3–14.

9. N. Kavvadias, P. Neofotistos, S. Nikolaidis,

K. Kosmatopoulos, and T. Laopoulos,

“Measurements analysis of the software-

related power consumption of

microprocessors,” IEEE Trans. Instrum.

Measurement, vol. 53, no. 4, pp. 1106–

1112, Aug. 2004.

10. K. Zotos, A. Litke, E. Chatzigeorgiou, S.

Nikolaidis, and G. Stephanides, “Energy

complexity of software in embedded

systems,” in Proc. IASTED, Jun. 2005, pp.

17–27.

11. S. Steinke, M. Knauer, L. Wehmeyer, and P.

Marwedel, “An accurate and fine grain

instruction-level energy model supporting

software opti- mizations,” in Proc. Int.

Workshop PATMOS, Sep. 2001.

12. V. Konstantakos, A. Chatzigeorgiou, S.

Nikolaidis, and T. Laopoulos, “Energy

consumption estimation in embedded

systems,” in Proc. IEEE IMTC, Apr. 2006,

pp. 235–238.

13. M. Lee, V. Tiwari, S. Malik, and M. Fujita,

“Power analysis and minimization

techniques for embedded DSP software,”

IEEE Trans. VLSI Syst., vol. 5, no. 1, pp.

123–135, Mar. 1997.

14. J. T. Russell and M. F. Jacome, “Software

power estimation and optimization for high

performance, 32-bit embedded processors,”

http://www.ijesrt.com/

[Devi et al., 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449
 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[46-53]

in Proc. ICCD: VLSI Comput. Processors,

Oct. 1998, pp. 328–333.

15. S. Chatterjee and A. S. Hadi, Regression

Analysis by Example. 4th ed., New York,

USA: Wiley, 2006.

http://www.ijesrt.com/

